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I. INTRODUCTION

Multi-robot task and motion planning (MR-TMP) is chal-
lenging due to the exponential expansion in the size of the
planning space as the number of robots and tasks increases.
Decoupled methods, which attempt to plan in individual
robot state spaces, achieve a linear scaling in the size of
the search space with respect to the number of robots but
are incomplete and often fail to plan for problems requiring
coordination [1], [2]. Coupled methods directly consider
the composite space, achieving coordination at the cost
of high computation effort, thus limiting them to smaller
problem sizes [3], [4]. Hybrid approaches consider varying
compositions of the state space and leverage the strengths of
both coupled and decoupled methods [5]–[7].

A recent hybrid method, Decomposable State Space
Hypergraph (DaSH) [8], utilizes a hypergraph-based repre-
sentation to model the changes in state space composition
corresponding to robot/object interactions (e.g. pick/place
and handoff actions). This approach achieved two orders
of magnitude faster planning time over comparable meth-
ods for multi-manipulator rearrangement planning problems.
However, computing motion feasibility across the entire set
of decoupled state space compositions captured by DaSH’s
hypergraph requires significant effort, most of which is not
used in the final solution.

This extended abstract introduces Lazy-DaSH which fur-
ther focuses computation effort by lazily computing motion
feasibility only within the set of decoupled robot state space
compositions that are potentially used in the solution, thus
accelerating the construction and querying of the state space
representation. Our preliminary results show that Lazy-DaSH
can scale to twice the number of robots (up to 8 manip-
ulators) and objects (up to 22 objects with 4 manipulators)
compared to DaSH (up to 12 objects with 4 manipulators). It
also achieves two orders of magnitude faster planning time
for multi-manipulator rearrangement problems across three
different scenarios.

II. THE LAZY-DASH METHOD

Lazy-DaSH builds on the DaSH method, which utilizes a
hierarchical hypergraph-based model for MR-TMP problems
(Figure 2). The hypergraph representation provides much
more concise representations, allowing the representation
size to remain manageable as the number of robots and
objects grows.
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Fig. 1: Comparison of search space expansion: Blue arrows show expansion,
while green (and red) arrows indicate narrowing. Lazy-DaSH introduces a
task query phase, highlighted by red arrows.

A. Decomposable Task Space Hypergraph

The DaSH approach starts by constructing a hypergraph
representation of the decoupled state space. This hypergraph
encodes possible robot/object compositions as vertices, anno-
tated with information such as grasp constraints, along with
transitions between them (i.e., pick/place or handoff actions).
The subsequent layer computes motion feasibility for all
transitions encoded in the task space representation. This
concise hypergraph representation allows faster query times
for combined task and motion planning across decoupled
state spaces, producing an optimistic schedule of motions and
actions that satisfy the task. A final conflict resolution layer
resolves any motion conflicts between paths in decoupled
state spaces producing a final valid schedule or solution. Any
failures at this layer are passed back to the query phase as
scheduling constraints.

B. Lazy-Decomposable Task Space Hypergraph

The overall framework is illustrated in Figures 1 and 2.
Lazy-DaSH differentiates itself from DaSH by employing a
hierarchical query framework: high-level task query within
the task plan layer and subsequent low-level motion query
within the motion plan layer. Each layer includes a represen-
tation construction phase and a query phase over respective
task/motion plan. This allows the motion feasibility to be
lazily computed only within the robot state spaces and the
transitions indicated by the task plan instead of the exhaustive
motion feasibility computed by DaSH.

1) Task Plan Layer: The task plan layer captures the
most abstract level of information about interactions between
robots and objects through the task space hypergraph. The
task space hypergraph contains start and goal information,
enabling the query process to find a valid transition history



Fig. 2: Illustration of Lazy-DaSH and experiment scenarios. The left figure shows two manipulators (R1 and R2) rearranging a single object (O1). The
distinguishing feature of Lazy-DaSH compared to DaSH is highlighted with a dashed red line in the task plan phase.

Fig. 3: The exemplary experiment results of the Sort scenario with up to 8 manipulators and an increasing number of objects.

connecting these states. The task plan is queried by construct-
ing the task-extended hypergraph, which involves expanding
the task space hypergraph. This results in an unvalidated
schedule since the task query phase does not encode the
motion feasibility within the state spaces.

2) Motion Plan Layer: The motion plan layer captures
motion details through the motion hypergraph and queries
the motion plan through the motion-extended hypergraph.
Motion feasibility is lazily validated during the motion query
phase, generating an optimistic schedule. By constructing
motion details only for the relevant state spaces as informed
by the task plan, the motion representation size remains
compact (red arrows and subsequent blue arrows in Figure 1).

3) Conflict Resolution Layer: The conflict resolution layer
aims to address any conflicts in the optimistic schedule,
producing a final valid schedule. Detected constraints are
passed back to the task or motion plan layers, triggering
replanning or expanding the representations.

III. VALIDATION

We evaluated Lazy-DaSH on the multi-manipulator re-
arrangement problem, where manipulators transport blocks
from randomly generated start positions to goal positions
through pick, place, and hand-over operations. We designed
three scenarios to show our algorithm’s capabilities: Sort,
Wall, and Shelf, as shown in Figure 2. The Sort scenario
demonstrates the algorithm’s scalability by having robots sort
objects into boxes. The Wall and Shelf scenarios highlight
its ability to handle the constraint feedback. Since the task
planning layer only encodes abstract interactions without

geometric details, the subsequent motion planning layer must
detect infeasible actions and inform the upper planning
layers of the infeasibility. In the Wall scenario, walls prevent
some robot interactions, necessitating a task and motion
plan that circumvents these obstacles. Similarly, the Shelf
scenario demands specific sequencing of tasks to comply
with geometric constraints.

Preliminary results demonstrating the scalability of the
algorithm are presented in the Sort scenario, where up to 8
manipulators sort objects, as shown in Fig. 3. By expanding
and adding motion details to only the state spaces composing
the current task plan, the representation construction time
cost is two orders of magnitude lower than in DaSH. The
smaller representation size enables the query phases to
manage up to 22 objects with 4 manipulators and 20 objects
with 8 manipulators. In contrast, DaSH can only scale up to
12 objects with 4 manipulators. This improvement allows for
task and motion query times in Lazy-DaSH up to two orders
of magnitude faster than DaSH. The conflict resolution time
is similar between DaSH and Lazy-DaSH, but the significant
reduction in the construction and query time enhances overall
planning scalability and planning time.
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